
Journal of Geometry and Physics 57 (2007) 2411–2418
www.elsevier.com/locate/jgp

Constant boundary-value problems for p-harmonic maps
with potential

Jian-Cheng Liu

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China

Received 20 August 2005; received in revised form 10 August 2007; accepted 11 August 2007
Available online 19 August 2007

Abstract

In this paper, after introducing a large class of manifolds which includes the manifolds with strictly negative curvature bounded
between two negative constants as special cases, we study the constant boundary-value problems of p-harmonic maps with potential
defined on such a class of manifolds, and obtain a Liouville-type theorem. The main theorem generalizes that of Karcher and
Wood [H. Karcher, J.C. Wood, Non-existence results and growth properties for harmonic maps and forms, J. Reine. Angew. Math.
353 (1984) 165–180] and Chen [Q. Chen, Stability and constant boundary-value problems of harmonic maps with potential, J.
Aust. Math. Soc. (Series A) 68 (2000) 145–154] even for the case of the usual harmonic maps or harmonic maps with potential.
It can also be applied to the static Landau–Lifshitz equations. Then, using the technique developed there, we prove a Liouville
theorem for p-harmonic maps with finite p-energy or slowly divergent p-energy, which answers partially Sampson’s conjecture in
a more general case.
c© 2007 Elsevier B.V. All rights reserved.

JGP SC: Global analysis; Analysis on manifolds

MSC: 53C21; 58E20; 58G30

Keywords: p-Harmonic maps with potential; Radial Ricci operator

1. Introduction and main results

By Bm we denote the unit ball in Rm with boundary ∂Bm , and by N any Riemannian manifold. Karcher and
Wood [7] proved that any harmonic map u : Bm

→ N (m ≥ 3) which is constant on ∂Bm must be a constant in Bm .
Chen [1] obtain the same conclusion in the following more general case.

Let M be an m-dimensional Riemannian manifold with sectional curvature KM , −a2
≤ KM ≤ −b2, where a, b

are positive constants and (m − 1)b/2 ≥ a. u : M → N is a harmonic map with potential H , i.e. the critical point of
the energy integral

EH (u) =

∫
M

[e(u)− H(u)],

where H is a smooth function on N and e(u) =
1
2 |du|

2 is the energy density of u.
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Harmonic maps with potential introduced by Fardoun and Ratto [3] are a new kind of generalized harmonic map
and also include the Landau–Lifshitz equations as a special case. In this paper, we will study the constant boundary-
value problems for p-harmonic maps with potential from a large class of manifolds which includes the manifolds with
strictly negative curvature bounded between two negative constants as special cases.

In order to state our main results, we introduce the following notation for the manifolds satisfying the condition
(C) and p-harmonic maps with potential.

Let Mm be complete, simply connected Riemannian manifold with non-positive sectional curvature. For any fixed
x0 ∈ M , r(x) denotes the distance function from x0 to x , Br (x0) stands for the geodesic ball with radius r and center
at x0. Taking an orthonormal frame field

{
ei ,

∂
∂r

}
, i = 1, . . . ,m −1, around any x ∈ ∂Br (x0), then ei ∈ Tx (∂Br (x0)).

Denote by λ1, . . . , λm−1 the eigenvalues of the radial Ricci operator

R
(
∂

∂r
, ·

)
∂

∂r
: X ∈ Tx (∂Br (x0)) 7→ R

(
∂

∂r
, X
)
∂

∂r
∈ Tx (∂Br (x0)),

where R is the curvature operator on M . With this notation, we introduce the following pointwise condition:

Condition(C) λi ≥

∑
j 6=i

λ j , for all indices i, 1 ≤ i ≤ m − 1,

or equivalently, for an orthonormal frame
{
ei ,

∂
∂r

}
,〈

R
(
∂

∂r
, ei

)
∂

∂r
, ei

〉
−

∑
j 6=i

〈
R
(
∂

∂r
, e j

)
∂

∂r
, e j

〉
≥ 0, (1.1)

∀ i = 1, . . . ,m − 1, where 〈·, ·〉 denotes the Riemannian inner product on M .
If the Condition (C) is satisfied at every point of M , we call M a Riemannian manifold satisfying the condition (C).

There exists a large class of such manifolds, for example:
(1) Euclidean space Rm and hyperbolic space Hm .
(2) The Riemannian manifold Mm with sectional curvature KM bounded as −a2

≤ KM ≤ −b2, where a, b are
positive constants and

√
m − 2 b − a ≥ 0.

(3) The Riemannian manifold Mm with sectional curvature KM satisfying −a2
≤ KM ≤ 0 and the Ricci curvature

RicM
≤ −b2, where a, b are positive constants and b >

√
2 a.

Let u : M → N be a smooth map between Riemannian manifolds M and N , H be a smooth function on N . For
p ≥ 2, we call u a p-harmonic map with potential H or for short a p-H -harmonic map if it is a critical point of the
p-H -energy:

E p,H (u) =
1
p

∫
M

|du|
p

−

∫
M

H ◦ u. (1.2)

That is, u is a p-H -harmonic map if and only if

dE p,H (ut )

dt

∣∣∣∣
t=0

= 0,

for any one-parameter family of maps ut : M → N with u0 = u. Note that, if H is constant, a p-H -harmonic map is
called a p-harmonic map. In particular, 2-harmonic maps are just the usual harmonic ones.

We can derive the first variation formula of p-H -harmonic maps in a similar way to those for harmonic maps as
follows:

dE p,H (ut )

dt

∣∣∣∣
t=0

= −

∫
M

〈τp,H (u), V 〉, (1.3)

where τp,H (u) = τp(u) + grad H ◦ u, τp(u) = −d∗(|du|
p−2du) and V = (dut/dt)|t=0 is a given vector field along

u. Therefore, the Euler–Lagrange equation of E p,H is

τp,H (u) = 0. (1.4)

We can now state our main results in this paper.
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Theorem 1. Let (Mm, g) be a complete, simply connected Riemannian manifold of dimension m (> p) with non-
positive sectional curvature KM and satisfying the condition (C) globally. Assume that u : M → N is a p−H-
harmonic map such that u|∂Br (x0) ≡ Q ∈ N. If H(Q) = maxy∈N H(y), then u must be constant in Br (x0).

Remark 1. On one hand, let M = Rm (m > 2), N = S2, H(y) = H0 · y, y ∈ S2 (where H0 6= 0 is a constant
vector in R3 and “·” denotes the inner product in R3). Then Theorem 1, for p = 2, leads to a conclusion for the
static Landau–Lifshitz equations. In particular, if m = 3, it is just the result of Hong [6] which asserted that the static
Landau–Lifshitz equation with constant boundary value H0/|H0| has only a constant solution.

On the other hand, since the manifolds discussed in Theorem 1 include ones with strictly negative curvature
bounded between two negative constants, so Theorem 1 recovers that of [1,6] as special cases. Our presentation
gives a unified treatment of both the harmonic maps with potential and the static Landau–Lifshitz equations under a
more general frame.

With the same class of manifolds as in Theorem 1, and the technique developed in the proof of Theorem 1, we also
obtain the following Liouville-type theorem for p-harmonic maps.

Theorem 2. Let Mm be as in Theorem 1. Assume that u : M → N is a p-harmonic map with finite p-energy or
slowly divergent p-energy. Then u must be constant.

We say that the p-energy E p(u) of u, defined by E p(u) =
∫

M ep(u) and ep(u) =
1
p |du|

p called the p-energy

density, is slowly divergent if there exists a positive function ψ(t) with
∫

∞

R0
dt

tψ(t) = ∞ (R0 > 0) such that

lim
R→∞

∫
BR(x0)

ep(u)
ψ(r(x))

< ∞. (1.5)

Remark 2. When p = 2, Theorem 2 answers partially Sampson’s conjecture: any harmonic map u : M → N
with finite energy, from a complete simply connected Riemannian manifold of dimension m (≥3) with non-positive
sectional curvature, must be constant. Concerning this conjecture, Theorem 2 may be viewed as a generalization of
results due to Sealey [9], Zhou [12] and Xin [10,11].

2. Some lemmas

Let ∇ be the Levi-Civita connection on M . For an orthonormal frame field {ei ,
∂
∂r }, put

hi j := Hess(r)(ei , e j ) =

〈
∇ei

∂

∂r
, e j

〉
, (2.1)

where Hess(r) is the Hessian of the distance function r , and −hi j are the coefficients of the second fundamental form
of ∂Br (x0). The following is the key lemma in the proof of Theorems 1 and 2.

Lemma 3. (1) Let (Mm, 〈·, ·〉) be the Riemannian manifold with non-positive sectional curvature KM and m ≥ 3;
then there exists ε > 0 such that when r ≤ ε, for any x ∈ ∂Br (x0), the following hold for all i = 1, . . . ,m − 1:∑

j 6=i

h j j − hi i ≥ 0. (2.2)

(2) Furthermore, if M is a Riemannian manifold satisfying the condition (C) defined before, then (2.2) is always
true on ∂Br (x0) for any r > 0.

Proof. (1) Since KM ≤ 0, the Hessian comparison theorem [4] says that, for any x ∈ ∂Br (x0) and i = 1, . . . ,m − 1,

hi i ≥
1
r
. (2.3)
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Now, for any R0 > 0, since BR0(x0) is compact, we can assume that, on BR0(x0), the sectional curvature of M
satisfies −a2

≤ KM ≤ −b2, where a > 0 and b ≥ 0 are constants. It follows again from comparison theorem [5]
that, for all l = 1, . . . ,m − 1,

rhll ≤ (ar) coth(ar). (2.4)

Then, from (2.3) and (2.4), we have

r

(∑
j 6=i

h j j − hi i

)
≥ (m − 2)− (ar) coth(ar). (2.5)

Since limr→0(ar) coth(ar) = 1 ≤ m − 2, by the continuity, there exists ε > 0 such that when r ≤ ε, for any
x ∈ ∂Br (x0), we have

r

(∑
j 6=i

h j j − hi i

)
≥ 0,

which implies (2.2).
(2) Taking an orthonormal frame

{
ei ,

∂
∂r

}
at x ∈ ∂Br (x0) and parallel translation in the radial direction, we obtain

an orthonormal frame field so that ∇ ∂
∂r

ei = 0, ∇ ∂
∂r

∂
∂r = 0. Then for all indices l = 1, . . . ,m −1, a direct computation

yields

dhll

dr
= −

m−1∑
j=1

hl j h jl −

〈
R
(
∂

∂r
, el

)
∂

∂r
, el

〉
. (2.6)

It follows from (2.6) that

d
dr

(∑
j 6=i

h j j − hi i

)
=

m−1∑
j=1

hi j h j i −

∑
k 6=i

m−1∑
l=1

hklhlk +

〈
R
(
∂

∂r
, ei

)
∂

∂r
, ei

〉
−

∑
j 6=i

〈
R
(
∂

∂r
, e j

)
∂

∂r
, e j

〉

= h2
i i −

∑
k,l 6=i

h2
kl +

〈
R
(
∂

∂r
, ei

)
∂

∂r
, ei

〉
−

∑
j 6=i

〈
R
(
∂

∂r
, e j

)
∂

∂r
, e j

〉
. (2.7)

Now take a new basis of the orthogonal complement {e j , j 6= i} of ei such that the matrix (hkl), k, l 6= i , can be
diagonalizable. Notice that

∑
j 6=i h j j is invariant under the change of the basis and for all l, 1 ≤ l ≤ m − 1, hll > 0.

Then we have

d
dr

(∑
j 6=i

h j j − hi i

)
= h2

i i −

∑
j 6=i

h2
j j +

〈
R
(
∂

∂r
, ei

)
∂

∂r
, ei

〉
−

∑
j 6=i

〈
R
(
∂

∂r
, e j

)
∂

∂r
, e j

〉

≥ h2
i i −

(∑
j 6=i

h j j

)2

+

〈
R
(
∂

∂r
, ei

)
∂

∂r
, ei

〉
−

∑
j 6=i

〈
R
(
∂

∂r
, e j

)
∂

∂r
, e j

〉
. (2.8)

Setting gi (r) =
∑

j 6=i h j j − hi i and A(r) =
∑m−1

l=1 hll , with the same ε (>0) as obtained in Lemma 3(1), from
(2.8) we obtain

d
dr

(
gi e

∫ r
ε Adr

)
≥ e

∫ r
ε Adr

·

(〈
R
(
∂

∂r
, ei

)
∂

∂r
, ei

〉
−

∑
j 6=i

〈
R
(
∂

∂r
, e j

)
∂

∂r
, e j

〉)
. (2.9)

Since M satisfies the condition (C) globally, i.e. (1.1) holds at all points of M , so we obtain the following monotonicity
inequality:

d
dr

(
gi e

∫ r
ε Adr

)
≥ 0,
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which implies that, for any R > ε,

gi (R)e
∫ R
ε Adr

≥ gi (ε) ≥ 0.

In particular, gi (R) ≥ 0 for any R > ε. Combining this with part (1) above, we complete the proof of the lemma. �

The next lemma is very useful in the proof of Theorem 2. Let u : (M, g) → (N , h) be a smooth map between
Riemannian manifolds M and N with Riemannian metrics g, h respectively. Define the stress p-energy tensor by

Sp(u) = ep(u)g − |du|
p−2u∗h,

then, for any smooth tangent vector field X on M , a straightforward calculation gives

(div Sp(u))(X) = −〈τp(u), du(X)〉, (2.10)

which implies that if u is a p-harmonic map, then div Sp(u) = 0.

Lemma 4. Let D ⊂ M be a compact domain such that ∂D is a smooth hypersurface in M, and n the outer unit
normal vector of ∂D; then for any smooth tangent vector field X with compact support,∫

∂D
ep(u)〈X,n〉 =

∫
∂D

|du|
p−2

〈du(X), du(n)〉 +

∫
D
(div Sp(u))(X)+

∫
D
〈Sp(u),∇ X〉, (2.11)

where ∇ X (V,W ) = 〈∇X V,W 〉.

Proof. By a standard computation, we obtain the following equalities:

div(ep(u)X) = ∇X ep(u)+ ep(u)〈∇ei X, ei 〉,

∇X ep(u) = div(|du|
p−2

〈du(X), du(ei )〉ei )− 〈du(X), τp(u)〉 − |du|
p−2

〈∇ X, u∗h〉.

Hence we have

div(ep(u)X) = div(|du|
p−2

〈du(X), du(ei )〉ei )− 〈du(X), τp(u)〉 + 〈Sp(u),∇ X〉.

Since SuppX is compact, by applying Green’s formula to the previous formula and using (2.10), we have the desired
formula (2.11). �

In order to simplify the proof of Theorems 1 and 2, we give the following lemma.

Lemma 5. With the same assumption on M as in Theorem 1, let u : M → N be a smooth map and X = r ∂
∂r . Then

there exists some constant δ > 0 such that

〈Sp(u),∇ X〉 ≥ δep(u). (2.12)

Proof. By the definition of Sp(u), a directly computation yields

〈Sp(u),∇ X〉 = ep(u)[1 + rh j j ] − |du|
p−2

{∣∣∣∣du
(
∂

∂r

)∣∣∣∣2 + rh jk〈du(e j ), du(ek)〉

}

=
1
p
|du|

p−2
∣∣∣∣du

(
∂

∂r

)∣∣∣∣2
(

1 + r
m−1∑
j=1

h j j − p

)

+
1
p
|du|

p−2
m∑

i=1

|du(ei )|
2

(
1 + r

∑
j 6=i

h j j − (p − 1)rhi i

)
= (I)+ (II), (2.13)

where we set

(I) =
1
p
|du|

p−2
∣∣∣∣du

(
∂

∂r

)∣∣∣∣2
(

1 + r
m−1∑
j=1

h j j − p

)
,
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(II) =
1
p
|du|

p−2
m∑

i=1

|du(ei )|
2

(
1 + r

∑
j 6=i

h j j − (p − 1)rhi i

)
.

In the following, we will estimate two parts (I) and (II) separately. Firstly, for m > p and p ∈ [2,∞), it follows
easily from (2.3) that

(I) ≥
m − p

p
|du|

p−2
∣∣∣∣du

(
∂

∂r

)∣∣∣∣2 . (2.14)

In order to estimate part (II), since we assumed that M satisfies the condition (C), that is to say,

λi ≥

∑
j 6=i

λ j ≥

∑
j 6=i

λ j/(p − 1),

then we know from Lemma 3(2), for i = 1, . . . ,m − 1, the following inequality holds on the whole of M :∑
j 6=i

h j j − hi i ≥ 0.

Hence,

(II) ≥
1
p
|du|

p−2
m−1∑
i=1

|du(ei )|
2. (2.15)

Substituting (2.14) and (2.15) into (2.13), we complete the proof of Lemma 5. �

3. Proof of the main theorems

Proof of Theorem 1. Since u is a p-H -harmonic map, or equivalently, τp,H (u) = τp(u)+ grad H ◦ u = 0, it follows
from (2.10) that

div Sp(u) = 〈grad H ◦ u, du〉.

Then by setting D = BR(x0), X = R ∂
∂r and n =

∂
∂r , and substituting these into (2.11), we get

R
∫
∂BR(x0)

ep(u) = R
∫
∂BR(x0)

∣∣∣∣du
(
∂

∂r

)∣∣∣∣2 +

∫
BR(x0)

r
∂(H ◦ u)
∂r

+

∫
BR(x0)

〈Sp(u),∇ X〉. (3.1)

Since u is constant at ∂BR(x0), using (2.12) and (3.1), we have∫
BR(x0)

r
∂(H ◦ u)
∂r

+ δ

∫
BR(x0)

ep(u) ≤ 0. (3.2)

Since KM ≤ 0, using Ding’s Laplacian comparison theorem [2], we have

4r ≥
1
r
.

On the other hand, due to Li [8], we know that

4r =
∂ J (θ, r)
∂r

1
J (θ, r)

,

where J (θ, r)dθdr is the volume element of BR(x0) in polar coordinates (θ, r) around x0. Those two facts lead to

∂

∂r
(r J (θ, r)) ≥ 2J (θ, r) > 0,

from which we have the following integral inequality:∫ R

0
r
∂(H ◦ u)
∂r

J (θ, r)dr = R J (θ, R)H(Q)−

∫ R

0
H ◦ u(θ, r)

∂

∂r
(r J (θ, r))dr
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≥ R J (θ, R)H(Q)− H(Q)
∫ R

0

∂

∂r
(r J (θ, r))dr

= 0.

Hence,∫
BR(x0)

r
∂(H ◦ u)
∂r

=

∫
∂BR(x0)

(∫ R

0
r
∂(H ◦ u)
∂r

J (θ, r)dr
)

dθ ≥ 0. (3.3)

From (3.2) and (3.3), we immediately conclude that ep(u) ≡ 0 in BR(x0), namely, u is constant in BR(x0), which
completes the proof of Theorem 1. �

Proof of Theorem 2. With the assumption on M as in Theorem 2, when u is a p-harmonic map, we have from (2.11)
and (2.12) that

R
∫
∂BR(x0)

ep(u) ≥ δ

∫
BR(x0)

ep(u). (3.4)

Now suppose that u is a nonconstant map, that is to say the p-energy density ep(u) does not vanish everywhere, so
there exists R0 > 0 such that for R > R0,∫

BR(x0)
ep(u) ≥ C0, (3.5)

where C0 is a positive constant. Thus (3.4) and (3.5) imply that∫
∂BR(x0)

ep(u) ≥
δC0

R
, for R > R0, (3.6)

which leads to

E p(u) >
∫

BR(x0)
ep(u) =

∫ R

0

(∫
∂BR(x0)

ep(u)
)

dr ≥

∫ R

R0

(∫
∂BR(x0)

ep(u)
)

dr ≥

∫ R

R0

δC0

r
dr = δC0 ln

R
R0
.

Letting R → ∞, this contradicts the assumption of the finite p-energy, therefore u is constant.
In the case of the slowly divergent p-energy, (3.6) also leads to

lim
R→∞

∫
BR(x0)

ep(u)
ψ(r(x))

=

∫
∞

0

dr
ψ(r)

∫
∂BR(x0)

ep(u) ≥ δC0

∫
∞

0

dr
rψ(r)

≥ δC0

∫
∞

R0

dr
rψ(r)

= ∞,

which contradicts (1.5), therefore u is constant. �
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